prepbook
  • Introduction
  • Some common stuff
    • python __repr__
    • HackerRank input tips
  • Data Structures and Algorithms
    • Breadth first search
    • Depth First Search
    • Dijkstra
    • A* Search Algorithm
    • Binary Search
    • python counter
    • Sorting
      • Merge Sort
      • Quick Sort
    • Priority Queue
  • Multiprocessing vs Threading
  • Common Coding
    • Find loop in lin list
    • Maximum sum subarray
  • Coding
    • Valid palindrome
    • Palindrome number
    • Remove duplicates from sorted array
    • Island perimeter
    • Serialize and Deserialize Binary Tree
    • Valid Soduku
    • Word Pattern
    • Word Pattern II
    • Group Anagrams
    • Implement Trie
    • Deep copy list with random node
    • Palindrome Permutation
    • Combination Sum
    • Clone Graph
    • Generate parenthesis
    • Fibonacci Number
    • LRU Cache
    • Merge two sorted arrays in place
    • Hamming Distance
    • Merge K sorted arrays
    • Kth smalles element in BST
    • Kth largest element in an array
    • Remove duplicates from sorted list
    • Power of 2
    • Nested list weight sum
    • SIngle number in a list
    • Factor combinations
    • Delete node from BST
  • hacker Rank
    • Coding
      • print staircase
      • Drawing book
      • Challenge 0
      • Min-Max sum
  • WorkRelatedCoding
    • Rectangle Overlap
  • Python tips
Powered by GitBook
On this page

Was this helpful?

  1. Coding

Implement Trie

Implement a trie withinsert,search, andstartsWithmethods.

Note: You may assume that all inputs are consist of lowercase lettersa-z.

Some more points (combining from geekforgeeks and stack overflow):

Trie s an efficient information re_trie_val data structure. Using trie, search complexities can be brought to optimal limit (key length).

If we store keys in binary search tree, a well balanced BST will need time proportional to

M * log N

, where M is maximum string length and N is number of keys in tree. Using trie, we can search the key in O(N * M) time. Since you need to create all the N*M nodes at least once. However the penalty is on trie storage requirements.

class TrieNode(object):
    def __init__(self):
        """
        Initialize your data structure here.
        """
        self.word = False
        self.children = {}


class Trie(object):

    def __init__(self):
        self.root = TrieNode()

    def insert(self, word):
        """
        Inserts a word into the trie.
        :type word: str
        :rtype: void
        """
        node = self.root
        for ch in word:
            if ch not in node.children:
                node.children[ch] = TrieNode()
            node = node.children[ch]
        node.word = True


    def search(self, word):
        """
        Returns if the word is in the trie.
        :type word: str
        :rtype: bool
        """
        node = self.root
        for ch in word:
            if ch not in node.children:
                return False
            node = node.children[ch]
        return node.word


    def startsWith(self, prefix):
        """
        Returns if there is any word in the trie
        that starts with the given prefix.
        :type prefix: str
        :rtype: bool
        """
        node = self.root
        for ch in prefix:
            if ch not in node.children:
                return False
            node = node.children[ch]
        return True


# Your Trie object will be instantiated and called as such:
# trie = Trie()
# trie.insert("somestring")
# trie.search("key")
PreviousGroup AnagramsNextDeep copy list with random node

Last updated 5 years ago

Was this helpful?